Answers to All Your Autonomous and Shared-Vehicle Questions | WGI

Toll Free


Answers to All Your Autonomous and Shared-Vehicle Questions

Gary Cudney, Senior Vice President of Parking and Restoration

That provocative headline grabbed your attention, but our industry must admit that we do not yet know all the questions — let alone the answers — about autonomous (AV) and shared vehicles. Certainly, the number one question parking professionals ask is, “How will it impact us?” I wish I had the definitive answer to that question alone. We are still at a point where media coverage about the coming age of autonomous vehicles is more opinion and speculation than hard facts. This dialogue is complicated by the extent of autonomous features under consideration. Already, many vehicles have semi-autonomous driver assistance features (Level 1 and 2) such as adaptive cruise control, driver attention monitoring, lane departure warning, and parking assist. However, going from semi-autonomous to limited self-driving automation (Level 3), or full self-driving automation (Level 4), is a major leap over current technology. Yet, it seems many speakers and writers are stating that full self-driving AV is an imminent fact rather than an opinion.

That said, I will share my two cents in Part 1 of this article, PLUS in Part 2 next month, I will present an innovative approach to flexible parking structure design that we call FlexPark.

My Thoughts on AV and Shared Vehicles

I admit I am a skeptic of self-driving AV and shared vehicles, especially about how soon they will become a disrupter to the parking industry. However, as a parking consultant and designer of parking structures that have a 50- to 100-year lifespan, I must anticipate changes caused by AV during this timeframe.

Reasons for my skepticism include the many barriers to self-driving AV and shared vehicle adoption. Understanding these barriers is key to predicting the speed and depth of impact their acceptance will have on the parking industry. Note, in the rest of this article, the focus will be on Level 4, fully self-driving AV that will have a dynamic impact on our industry and society at large.

Barrier #1 – Technology

The technology itself is the greatest barrier to entry. AV rely on both connecting to the vehicles around them, as well as roadway monitoring sensors. Testing of AV has not progressed to highway speeds under extreme conditions of snow, ice, fog, heavy rain, and emergency conditions related to accidents, construction, or other unforeseen traffic conditions – all extremely important conditions to test and validate before implementation and adoption are feasible. Seemingly easier technology issues to resolve are AV’s ability to find open parking, enter with autonomous access control, and exit upon automatic payment. Once parked, autonomous electric vehicle (EV) charging will also need to occur.

Barrier #2 – Governmental Regulation, Legal Issues, and Lobbyists

The governmental regulation process for AV is still a big unknown and includes federal, state, and local governments. Added to that complexity is the myriad of legal and insurance issues. Tough questions will need to be answered, such as:

• Who is at fault in the case of an accident by a self-driving AV?

• Should driverless AV be programmed to always follow the law?

• How will AV be programmed to respond to an emergency? Will they protect the vehicle passenger(s) first or might they choose to put them at risk in favor of others outside the vehicle?

• What will be the role of the federal, state, and local governments to establish AV regulations?

I also envision heavy lobbying by special interest groups who might be “disrupted” by AV and shared vehicles such as auto dealers, truckers, and oil companies.

Barrier #3 – Cost Issues

In addition to the technical and legal complications, there are also cost issues. When they initially hit the market, the driverless AV’s prohibitive cost will likely exclude the majority of people, inhibiting widespread adoption. Individuals are not the only ones facing a larger price tag; the extent of roadway infrastructure improvements needed for AV are not fully understood, let alone funded. At present, we can’t seem to fix the existing potholes in our roads or repair deteriorated bridges, which leads me to believe funding for roadway improvements for AV are also likely to be problematic.

Barrier #4 – Consumer Trust

Not only must the AV equipment prove reliable, but consumers must trust in it — which is a separate issue. Younger generations are more apt to consider AV, but are least able to afford the higher cost. With all the technical problems that occur in everyday life such as high-maintenance computerized kitchen appliances, computer software glitches, need for phone or computer reboots, viruses, hacking, dropped cell service, and inaccurate map guidance, would you trust your life to a computer driving a vehicle at 75 mph? I don’t, yet.

The Need for Changing Design – ‘FlexPark’

Over time, new parking structure design will change to accommodate “the coming AV.” or at least anticipate the need for future flexibility and adaptability for the currently unknown impacts on such structures.

At Carl Walker, a division of WGI, we developed an approach to parking structure design, called FlexPark, to help owners assess the opportunities for a flexible and adaptable parking facility that can be designed and built to meet the increasing parking demand today, yet flex in the future if parking demand decreases.

Planning today for future adaptive reuse of parking structures

By utilizing FlexPark, a structure can initially be designed in a way that the parking area can be converted to office, residential, retail, education, pick up/drop off zones, Uber/Lyft or shared-vehicle staging, or other future uses. By planning for future adaptions in the initial design, it becomes far more sustainable and less disruptive to renovate a portion or entirety of the parking structure for other use(s). if and when needed.

Floor slopes are the most challenging consideration in adapting a parking structure for other use. Parked-on vehicle ramps typically slope 4% to 6% for vehicular access from floor to floor. Sloping ramps of this grade would likely require abandonment and/or removal at floors converted to other uses. It may be preferred to locate the ramp at the exterior of a three-bay (or wider) parking facility or if located at the interior, a lightwell/courtyard could be created if it were removed. If the ramp is removed, the remainder of the floor that is not a vehicle ramp could be repurposed for another use; however, even a “flat” floor slopes 1.5% to 2% for drainage.

The entire “flat” bay (62-foot-wide bay with perpendicular parking on each side and a two-way drive aisle) slopes up and down 12 inches to 15 inches in a washboard pattern to provide positive drainage. Leveling these “not quite flat” floors can be done using tapered, rigid insulation with a 4-inch-thick concrete topping if additional story height is provided. The topping weighs nearly 50 pounds per square foot (psf); therefore, the parking structure floor must be designed for this heavier dead load to be a valid option.

Another option would be to level the floors with an access floor system using variable height pedestals. Building new parking structures with totally flat floors is not recommended, as they won’t provide the code-required drainage and would create significant slip-and-fall liability risk for garage owners and designers.

In addition to the higher dead load, the live load of other uses would typically be higher than the 40 psf required for parking, as shown in Table 1.

Furthermore, the lateral loads for uses other than parking could be higher, as the “seismic importance factor” for occupied buildings is higher than for parking structures. The structure must be stouter to resist these loads.

An existing parking structure, not designed for these higher loads, could not be economically converted to other uses above the first floor. Designing a new parking structure for these higher loads would add significant initial cost for larger foundations and the stouter superstructure. It may then be less expensive to use a cast-in-place post-tensioned concrete superstructure, rather than precast concrete.

Rather than converting an entire floor to another use, the alternative option is to convert only a part of a floor, or convert the end of a longer parking structure.

Another option tor future flexibility is to use express ramps, rather than sloped parked-on ramps, so that the “flat” parking floors can be more easily adapted to other uses in the future. The picture at the left illustrates a parking structure with “flat” floors accessed by a circular express ramp. As an alternative. the parking levels could be repurposed with the rooftop parking at Level 5 becoming a green roof and Level 4 becoming office space it parking demand decreased in the future.

Parking structures typically have story heights of 10 feet to 11 feet. 4 inches. This would need to be increased at least 16 inches to 19 inches to level the floor as described above. Other uses would typically require even higher ceiling heights, and possibly mechanical duct space above the ceiling, so planning for this in the initial design makes sense. Level 1 of a flexible parking structure might have a story height of 14 feet to 18 feet, and upper levels 12 feet to 14 feet for these purposes.

Providing the future flexibility to retrofit parking to other uses would also require consideration of other features such as:

• Level 1 could be converted to retail or commercial storefront. Lobbies for upper-level alternative uses, passenger drop-off and pick-up, mechanical/electrical/ plumbing rooms, or other uses.

• Facades may need to be adaptable or replaceable to add windows and other architectural treatments appropriate for the alternate use(s).

• The footprint size may need to be optimized for future alternate use(s), rather than the larger footprint typically desired for an efficient parking structure.

• Elevators and stairways may need to be placed in alternative locations other than the typical corner locations used in parking structures.

• Stair width may need to increase for a higher occupant load of other use(s).

• Column spacing and fire rating of the structure may need to be different.

• Mechanical and electrical systems may need to be different for use(s) other than parking. This may include vertical chases or shafts for utility services, equipment rooms for future items such as a larger transformer, emergency generator, HVAC chiller and fire pump.

• Service bays and loading docks may be required for other use(s).

• Parking areas may need to flex to be used by autonomous vehicles, including:

o Narrower parking spaces can be used, so clear-span construction that allows this would be desirable.

o EV-charging (autonomous).

o Cellular service for communication between “connected” vehicles and for AV operation.

o Sensors for AV operation.

o Drop-off and pick-up zone if shared vehicles become more common.

As anyone involved in developing new parking structures knows, they are expensive to build. An adaptable parking structure will cost more, but its flexibility brings value and is more sustainable. Owners and design teams can compare the options of designing new parking structures to be adaptable, or if parking demand drops in the future, older parking structures, parking lots, and those in prime locations could be removed from service and demolished to make way for new development.

The FlexPark approach is a fantastic way to compare the options during the planning and design of new parking structures, and to decide on a course of action best-suited to each situation considering the unknown future of AV and shared vehicles.


About Author

Gary Cudney

Senior Vice President of
Parking and Restoration

Gary has 34 years of experience serving as principal in charge and project manager on parking projects. His parking studies and investigations experience emphasize site evaluation/feasibility for parking structure expansions and economic evaluation.

Connect with
Gary Cudney

Related Articles